

Relevant Financial Disclosure(s)

John M. Tovar, PharmD

I have no actual or potential conflict of interest in relation to this program/presentation.

2

What Will I Learn (Pharmacists)

Objectives

- Describe the type and severity of urinary tract infections (UTIs) seen in the hospital setting.
- 2 Identify risk factors for the development of antibiotic-resistant pathogens in patients with UTIs.
- Discuss treatment options for the management of antibiotic-resistant UTIs.

Objectives

State the types of urinary tract infections seen in the hospital.

List the main antibiotic-resistant pathogens found in patients with UTIs.

Identify the main antibiotic-resistant UTIs.

4

Why Should I Care

- Second most common bacterial infection in the United States
- > 7 million ambulatory care visits by females every year
- ➤ Fourth most common health-care associated infection
- Prevalence in the hospital is 12.9% (2/3 are catheter-associated)

 Schappert SM, et al. Vital Health Stat. 2011;13:1-28. 2. Foxman B. Nat Rev U 2010;7:653-660. 3. Magill SS, et al. N Engl J Med. 2014;370:1198-1208.

5

Question 1

An uncomplicated UTI is defined as acute cystitis occurring in a female who: (Select ALL that apply)

- A. is healthy
- B. is not pregnant
- C. is postmenopausal
- D. has no known structural urological abnormalities

Urinary Tract Infections Classification
▶ Lower
▶ Upper
Severity
▶ Uncomplicated
▶ Complicated
Location
▶ Community-Associated (CAUTI)
► Health care-Associated (HAUTI)
Bader M, et al. Postgradu ate Medicine. 2017;129(2):242-58.

Bader M, et al. Postgraduale	E. coli – 65% K. pneumoniae – 10% P. mirabilis – 5% E. faecalis – 4% P. aeruginosa – 3%		
te Medicine. 2017;139(3):242-58.	E. coli – 49% Enterococcus spp. – 18% K. pneumoniae – 15% P. aeruginosa – 10% P. mirabilis – 6% E. cloacae – 5%	Suspects Inpatient	

8

Question 2

Which of the following enterobacterales is more likely to harbor Extended-Spectrum Beta Lactamases (ESBLs) genes?

- A. E. coli
- B. P. aeruginosa
- C. E. cloacae
- D. C. freundii

Question 3

Enterobacterales that produce Extended-Spectrum Beta Lactamases (ESBLs) remain susceptible to $____$.

- A. cefoxitin
- B. cefepime
- C. ceftriaxone
- D. ceftazidime

10

11

Question 4

All of the following are risk factors for the development of antibiotic-resistant gram-negative UTIs, EXCEPT:

- A. Age (older than 50)
- B. Prior UTIs
- C. Presence of a urinary catheter
- D. Recent hospitalization (30 days)

16

17

	E. cloacae			
Table 1. ampC Induction Pr	rofile of Various Antibacterials			
	Inducible (Wild-Type)			
	Strong Inducers of ampC	Weak Inducers of ampC		
Good substrates of ampC	Ampicillin first-generation cephalosporins, cefoxitin, cefotetan	Ceftazidime, ceftriaxone, cefotaxime, piperacillin, ticarcillin, aztreonam		
Phenotype	Resistant	Susceptible		
Poor substrates of ampC	Imipenem	Cefepime		
		Meropenem		
Phenotype	Susceptible	Susceptible		

Question 5

Which of the following would be the best choice for a hospitalized patient with a Carbapenem-Resistant Enterobacterales (CRE) pyelonephritis?

- A. ceftazidime-avibactam
- B. meropenem
- C. piperacillin-tazobactam
- D. ciprofloxacin

32

Targeted Therapy CRE 1 Nitrofurantoin, TMP-SMX, ciprofloxacin, levofloxacin (IE susceptible) 2 Aminoglycosides, certazidime-avibactam, meropenem-varbobactam, imipenem-cilastatin-relebactam, cefiderocol DTR-P. aeruginosa 1 Ceftazidime-avibactam, meropenem-varbobactam, imipenem-cilastatin-relebactam, cefiderocol CER (September National Processor Control of Control of

