Cardiac Amyloidosis: Overview of Disease State and Treatment

DUSTIN BIVINS, PHARMD

PGY1 PHARMACY RESIDENT

PIEDMONT ATLANTA HOSPITAL

RESIDENCY PROGRAM DIRECTOR: NAADEDE BADGER-PLANGE, PHARMD, BCPS

Objectives For Pharmacists

- Describe the pathophysiology, symptomology, and diagnostic indicators of cardiac amyloidosis
- Recognize medications used for cardiac amyloidosis
- Explain relevant drug monitoring parameters while on therapy
- Identify the proper cardiac amyloidosis treatment modality given a patient case

Objectives For Pharmacy Technicians

- Describe cardiac amyloidosis
- List medications used for cardiac amyloidosis
- Recall how medications for cardiac amyloidosis help patients

Disclosures

I do not have any relevant financial relationships with any commercial interests to disclose

Pre-test

- •What is the mechanism of action of patisiran?
- •Which of the following would be the best option for the rhythm control management of atrial fibrillation in a patient with ATTR-CM?
- What is the preferred treatment regimen for patients with AL amyloidosis who will NOT undergo ASCT?
- •Given a patient case which drug therapy would you like to start in this patient?

Cardiac Amyloidosis Overview

- Restrictive cardiomyopathy caused by buildup of amyloid fibrils in myocardium
- AL: Immunoglobulin light chain amyloidosis
 - Typically caused by abnormal proliferation of plasma cells
- ATTR: transthyretin amyloidosis
 - Misfolded transthyretin protein
 - Accumulates in myocardium (ATTR-CM) and neural tissue
 - Two types:
 - ATTRv
 - ATTRwt

ATTR-CM- amyloid transthyretin cardiomyopathy ATTRv- amyloid transthyretin variant ATTRwt- amyloid transthyretin wild type

Indicators of Possible Cardiac Amyloidosis

- •Symptomology:
 - Dyspnea
 - Fatigue
 - Edema
 - Moderate to severe left ventricular (LV) wall thickening (>14mm)

Indicators of Possible Cardiac Amyloidosis

- •Cardiac indicators:
 - Inability to tolerate antihypertensive or heart failure medications due to hypotension or orthostatic hypotension
 - Persistent low elevation of troponin
 - Unexplained atrioventricular (AV) block or prior pacemaker implantation
 - Mismatch between QRS voltage on electrocardiogram (EKG) and LV wall thickness on echocardiogram (Echo)
 - Family history of cardiomyopathy

Indicators of Possible Cardiac Amyloidosis

- •Non-cardiac indicators:
 - Neurological: paresthesia, weakness, orthostatic hypotension, gastroparesis, incontinence, urinary retention
 - Orthopedic: carpal tunnel, bicep tendon rupture, lumbar spinal stenosis
 - Family history of polyneuropathy

Diagnostic Testing

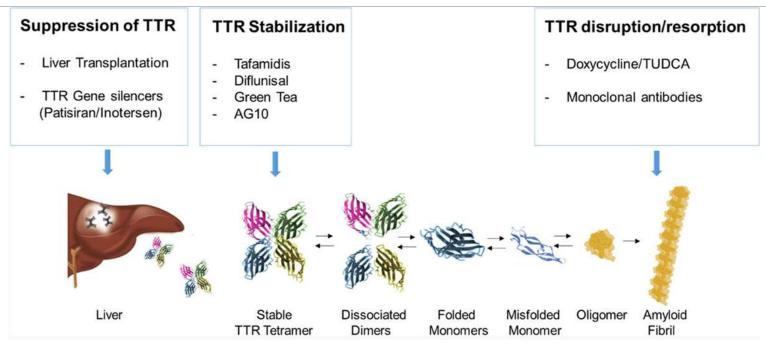
- Electrocardiogram (EKG)
 - Increased left ventricular wall thickness → evidence of left ventricular hypertrophy (LVH) or left bundle branch block on EKG
 - Conduction disturbances in sinus node and Purkinje fibers
 - Low QRS voltage
 - Psuedo-infarction patterns on EKG
 - Atrial fibrillation

General Diagnostic Testing

•Imaging:

- Cardiac MRI: useful to differentiate constrictive pericarditis, myocarditis, or possible amyloidosis
- Echo: thickened right ventricle, small LV cavity, impaired longitudinal strain

Bone scintigraphy


- Compares heart to rib uptake of technetium isotope in single photon emission computed tomography (SPECT)
- Grade 2 to 3 (higher cardiac to rib intake of technetium) indicative of ATTR-CM

ATTR Amyloidosis

Diagnostic Testing for ATTRv

- Genotyping
 - Determines ATTRv vs ATTRwt
 - ATTRv warrants testing of family members
 - Val122Ile mutation generally more aggressive disease
 - Ancestry backgrounds for common genotypes
 - Val30Met: Portuguese, Swedish, and Japanese
 - Val122Ile: African American and African Caribbean
 - Thr60Ala: Irish

Mechanism of Treatment Strategies in ATTR

TTR Silencers

Patisiran

- •Small interfering (si, silencing) RNA → degrades TTR mRNA
- •Intravenous, dose based on actual body weight (<100 kg, 0.3 mg/kg q3weeks, >/=100kg, 30 mg q3weeks)
- •APOLLO trial:
 - Slower progression of amyloidosis related polyneuropathy
 - Subgroup analysis in patients with LV wall thickening showed reduced LV longitudinal strain, LV wall thickness, and NT-proBNP
- •APOLLO-B: demonstrated efficacy of patisiran in cardiomyopathy
- Notable adverse drug reactions:
 - Infusion related reactions, reduced vitamin A levels

Inotersen

- •Single stranded antisense oligonucleotide → binds TTR mRNA → degradation
- Subcutaneous, 284 mg weekly with daily vitamin A supplementation
- •NEURO-TTR trial:
 - Slower progression of amyloidosis related polyneuropathy
 - Stabilization of LV wall thickness, global systolic strain, and improved 6minute walk test
- Notable adverse drug reactions:
 - REMS drug due to severe thrombocytopenia and glomuerulonephritis, vasculitis, decrease in vitamin A levels, hepatotoxicity, stroke and cervicocephalic arterial dissection

TTR Stabilizers

Diflunisal

- Nonsteroidal anti-inflammatory drug that stabilized
 TTR in vitro
 - Dose: 250 mg by mouth twice daily
 - Must be taken with proton pump inhibitor
 - Associated with reduced neuropathies
 - Some evidence in ATTR-CM in small studies

Tafamidis

- Mechanism of action: binds thyroxine binding site of TTR
- 2 dosage forms: Vyndamax (61 mg PO qday) and Vyndaqel (80 mg PO qday)
- No adverse reactions listed in manufacturer's labeling
- •ATTR-ACT trial:
 - All cause mortality (29.5 vs 42.9%; P<0.05)
 - Cardiovascular related hospitalization (0.48 vs 0.70 per year; P<0.05) at 30 months
 - Rate of decline in 6 minute walk distance (P<0.001)
 - Rate of decline in Kansas City Cardiomyopathy Questionnaire Overall Summary score (P<0.001)

Trial Drug: AG10

- Mechanism of action: binds to tetramer and mimics
 TTR T119M mutation → natural stabilization of TTR
 - Phase 2 trial indicated mortality and cardiovascular hospitalization were lower than placebo
 - Phase 3 trial in process

Potential TTR Disruption/Resorption

- Doxycycline and tauroursodeoxycholic acid
 - Potentially removes amyloid deposits
- Epigallocatechin-3-gallate
 - Green tea catechin
 - Inhibits amyloid formation in vitro
- •PRX004
 - Monoclonal antibody
 - Currently under investigation

Audience Question

What is the mechanism of action of patisiran?

- A. TTR Silencer
- B. TTR Stabilizer
- C. TTR Disrupter
- D. None of the above

Which Disease Modifying Therapy to Use

• Cardiomyopathy
• Tafamidis
• Diflunisal

• Cardiomyopathy
• Tafamidis
• Diflunisal
• Cardiomyopathy
• Tafamidis
• Diflunisal
• Cardiomyopathy
• Tafamidis
• Diflunisal
• Neuropathy
• Inotersen, Patisiran, Tafamidis, Diflunisal
• Neuropathy
• Inotersen, Patisiran, Diflunisal

Heart Failure Management

- Low cardiac output state
 - Beta blockers and non-dihydropyridine (DHP) CCBs generally not tolerated
 - Diuresis useful in removing excess fluid volume
 - Aldosterone antagonists may be beneficial
 - Blood pressure reducing agents not recommended due to potentiating already existing hypotension

Advanced Heart Failure Therapies

- LV assist devices
 - Possible bridge to transplant
- Liver transplantation
 - Transplant removes ATTRv producing cells
 - ATTRwt protein is native → liver transplant ineffective
- Heart transplantation
 - Only definitive treatment for ATTR-CM
 - Preferred in ATTRwt
- Combined heart and liver transplantation
 - Preferred in ATTRv with neuropathy

Arrhythmia Management

- Atrial and ventricular arrythmias common
- •AHA HF guidelines recommend AC regardless of CHA₂DS₂-VASc score in patients with afib
 - Intracardiac thrombi occur in 1/3 of patients
- Rate control
 - Amiodarone- drug of choice
- Device implantation
 - Permanent pacemaker (PPM) or internal cardiac defibrillator (ICD) may be beneficial

AC- anticoagulation

Audience Question

Which of the following would be the best option for the rhythm control management of atrial fibrillation in a patient with ATTR-CM?

- A. Digoxin
- B. Amiodarone
- C. Sotalol
- D. Dofetilide

AL Cardiac Amyloidosis

Overview

- Deposition of protein derived from immunoglobulin light chains that misfold in organ tissue causing dysfunction
 - Produced by hematologic malignancies
- •Can present in other organs besides the heart (50 70%) of patients with cardiac involvement)
 - Kidney, nervous system, liver, muscles, skin
- •Typical presentation of symptoms at age ≥ 40 years

Symptomology

- Proteinuria and nephrotic syndrome
- Neuropathy
- Heart failure symptoms
- Carpal tunnel syndrome
- AV block
- Loss of appetite
- Severe fatigue
- Unintentional weight loss
- Orthostatic hypotension

Diagnostic Testing for AL Amyloidosis

- Biopsy of abdominal fat pad and bone marrow
 - If negative, biopsy affected organ
 - Determination of amyloid type done by chemical testing and staining
- Myeloma FISH panel
 - T(11;14)(q12;q32) most common type of mutation seen
 - Others include del(13q14) and gain of 1q21

Diagnostic Testing for AL Amyloidosis

- M protein in urine or blood
 - Presence of monoclonal free light chain
 - Detection suggestive of monoclonal plasma cell proliferative disorder
 - Serum kappa/lambda free light chain ratio
 - Ratio <0.26 or >1.65 considered abnormal
 - Identified by immunofixation or serum protein electrophoresis

Diagnostic Criteria

- Per Mayo Clinic and International Myeloma Working Group, all four must be present:
 - Presence of amyloid symptomology in affected organ
 - Positive amyloid staining by Congo red in tissue or detection of amyloid fibrils on electron microscopy
 - Presence of light chains by mass spectrometry or microscope
 - Monoclonal plasma cell proliferative disorder

Staging

- Useful for estimating survival rate in stem cell transplantation vs non-transplantable
 - Mayo Stage 2004
 - NT-proBNP plus cardiac troponin T
 - Boston University Staging System
 - BNP plus cardiac troponin I
 - Revised Mayo Stage 2012
 - NT-proBNP, cardiac troponin T, and serum free light chains
- Changes in NT-proBNP associated with disease progression and response to treatment
 - Decrease in >30% associated with better prognosis


AL Specific Treatment

- Heart failure, arrhythmias, anticoagulation managed similarly to ATTR
- Transplant
 - Heart transplant potentially an option in select cases
 - Kidney transplant feasible in end stage renal disease (ESRD)
 - Liver transplant not recommended
- Autologous hematopoietic cell transplantation (HCT)
- Chemotherapy
 - HCT vs non-HCT determines regimen choice

Autologous Hematopoietic Cell Transplantation (HCT)

- General criteria for ASCT
 - Age ≤ 70
 - Troponin T <0.06 ng/mL
 - Systolic blood pressure (SBP) ≥ 90 mmHg
 - Creatinine clearance ≥ 30 mL/min unless on dialysis
 - ECOG performance status ≤ 2
 - New York Heart Association (NYHA) functional status class I or II
 - No more than two organs involved
 - Not on home oxygen

Autologous Hematopoietic Cell Transplantation (HCT) Process

Transplantable Patients

- •Induction therapy followed by high dose melphalan → autologous HCT
 - •Induction therapy:
 - Daratumumab plus cyclophosphamide, bortezomib, and dexamethasone (dara-CyBorD) preferred
 - Avoid regimens with immunomodulatory derivatives (lenalidomide, thalidomide)

Non-Transplantable Patients

- Dara-CyBorD preferred regimen
 - Andromeda trial demonstrated better response compared to CyBorD alone
 - Hematologic complete response 53 vs 18% (relative risk ratio, 2.9;
 95% CI 2.1 to 4.1)
 - Cardiac response 42 vs 22%
 - Death (hazard ratio 0.58; 95% CI 0.36-0.93)

Daratumumab

- •MOA: monoclonal antibody against CD38 → inhibits the growth of CD38 expressing tumor cells by causing apoptosis
- Intravenous and subcutaneous formulations
- •Requires premedication with corticosteroid, acetaminophen, and antihistamine 1 to 3 hours prior to administration
- •ADRs: **bone marrow suppression, HBV reactivation**, fatigue, headache, arthralgia, limb pain, infusion reactions, fever

Cyclophosphamide

- MOA: alkylating agent preventing cell division by cross linking DNA strands and preventing cellular DNA formation
- Dose adjustment for impaired renal function
 - Considerations for dose adjustments based on hepatic function (cyclophosphamide is a prodrug)
- •ADRs: bone marrow suppression (BMS), cardiotoxicity, hemorrhagic cystitis, hepatotoxicity, pulmonary toxicity, secondary primary malignancy

Bortezomib

- MOA: inhibits chymotrypsin-like activity at 26S proteasome → cell cycle arrest → apoptosis
 - Proteasomes regulate protein homeostasis in cell
- Dose adjustment for impaired hepatic function
- Dosing adjusted if toxicity occurs based on severity of ADR and indication of use
- •ADRs: BMS, cardiotoxicity, hepatoxicity, neuropathy, posterior reversible leukoencephalopathy syndrome, progressive multifocal leukoencephalopathy, edema
- Cannot be given intrathecal

Melphalan

- •MOA: alkylating agent → inhibits DNA and RNA synthesis via formation of carbonium ions and cross linking of nucleotides
- Dosing for autologous HCT: 200 mg/m2
- Considerations for dose reduction in renal dysfunction
- Formulations/products not equivalent
- Moderate to high emetic potential
- •ADRs: BMS, GI toxicity, mucositis, hepatotoxicity, pulmonary toxicity, secondary malignancy, electrolyte abnormalities, edema

Alternate Regimens

- CyBorD
 - Decreased rates of lymphopenia, upper respiratory tract infections (URTI), neuropathy compared to addition of daratumumab
 - Hematologic response seen in 60 to 65% of patients
 - Cardiac response seen in 17 to 33% of patients
- Bortezomib, melphalan, dexamethasone (BMD)
- Melphalan and dexamethasone

Determining Response to Initial Therapy

- •Different systemic therapy is indicated in:
 - Hematologic or organ progression of disease
 - •<50% reduction in difference between involved free light chain (FLC) and uninvolved free light chain (dFLC) levels after two cycles of chemo
 - dFLC >/= 40 mg/L after four to six cycles of chemo or on day 100 after transplant

- Daratumumab-based regimens
 - Phase II trial with 40 patients with median of three prior therapies
 - Very good partial response seen in 48% of patients
 - Median time to response of one week
 - Median progression free survival of 25 months

- Proteasome inhibitor regimens
 - Bortezomib
 - Ixazomib (oral)
 - TOURMALINE-AL1 trial
 - 168 patients with relapsed or refractory disease
 - Ixazomib plus dexamethasone vs non-proteasome inhibitor based regimen
 - 50% of patients had hematologic response
 - Longer treatment duration (median 11.7 to 5.0 months) and median time to decline in organ function or mortality (35 vs 26 months)
 - Notable ADRs: diarrhea, rash, cardiac arrhythmias, nausea

- Immunomodulatory derivatives
 - Lenalidomide with low dose dexamethasone +/cyclophosphamide
 - Increased risk of thromboembolic so must be on VTE prophylaxis
 - Low incidence of neuropathy
 - Pomalidomide plus dexamethasone
 - Thalidomide plus low dose dexamethasone +/- cyclophosphamide
 - Increased risk thromboembolism so requires VTE prophylaxis
 - ADRs: bradycardia, worsening heart failure, neuropathy

- Bendamustine plus dexamethasone
 - Reserved for patients that have failed multiple other regimens
 - ADRs: myelosuppression, fatigue, nausea, vomiting

Audience Question

What is the preferred treatment regimen for patients with AL amyloidosis who will NOT undergo ASCT?

- A. CyBorD
- B. Melphalan and dexamethasone
- C. Dara-CyBorD
- D. lenalidomide and dexamethasone

Prognosis

- Determined by extent of organ involvement
- •30 45% mortality within 6 to 12 months
- Advanced stage has median survival as short as 4 to 6 months
- Patients with limited organ involvement can survive for several years
- Concomitant myeloma or Waldenstrom macroglobulinemia worsen prognosis

Patient Case

Patient KS

- •70 year old male of Caribbean decent
- •Primary problem: new onset heart failure symptoms, neurologically intact
- •Other past medical history: afib with left atrial appendage thrombus, hypertension
- •Imaging: echo demonstrating LVEF 25% with small LV cavity and longitudinal strain
- Right heart cath with biopsy showing:
 - Pathology consistent with ATTR-CM
 - V122I gene
- •Relevant medications prior to admission:
 - Apixaban
 - Lisinopril
 - Hydralazine

Patient KS

- •Which medication would you like to start in KS?
 - A. Dara-CyBorD
 - ·B. Patisiran
 - C. Dexamethasone
 - D. Tafamidis

Applications to Practice

- Tafamidis remains the current mainstay of medical management for patients with ATTR-CM
- Heart +/- liver transplant currently only curative options for advanced disease in ATTR-CM
- Dara-CyBorD +/- autologous HCT provides the most efficacious response in the treatment of AL amyloidosis
- New data and treatments on the horizon in both AL and ATTR amyloidosis

Cardiac Amyloidosis: Overview of Disease State and Treatment

DUSTIN BIVINS, PHARMD

PGY1 PHARMACY RESIDENT

PIEDMONT ATLANTA HOSPITAL

RESIDENCY PROGRAM DIRECTOR: NAADEDE BADGER-PLANGE, PHARMD, BCPS